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Abstract

The application of artificial intelligence could re-
duce labor costs and improve the productivity
of shield tunneling, a widely used tunnel con-
struction method. In the shield tunneling plan-
ning process, tunnel segments are assigned along
a predetermined curve, called the planning line.
Conventionally, skilled engineers manually assign
segments to minimize gaps between each seg-
ment and the planning line although they need
to reduce each gap to only less than a toler-
ance. This implies construction costs can be re-
duced by adjusting the assignment within the tol-
erance. This study considers reduced gaps as con-
straints and attempts to reduce the amount of ex-
cavated soil by considering segment assignment
as a constrained combinatorial optimization prob-
lem. Under these conditions, the segment as-
signment problem has severe constraints and high
dimensional variables. This paper presents a
co-evolutionary particle swarm optimization-based
method for large-scale constrained combinatorial
optimization. A two-dimensional simulation exper-
iment using real-world construction data was per-
formed to evaluate the effectiveness of the proposed
method. The results demonstrate that the proposed
method statistically outperforms the work of skilled
engineers and other comparative methods in all test
problems.

1 Introduction
Labor shortage is a serious problem in the construction in-
dustry worldwide. The United States’ construction industry,
which employs more than seven million workers, has experi-
enced a severe shortage of skilled labor since the early 1980s,
and this shortage is expected to continue [Olsen et al., 2012].

In Hong Kong, the scope and extent of public and private
sector infrastructure is rapidly growing; however, currently,
labor supply cannot keep pace with the demand as 12% of the
construction workers in Hong Kong have reached retirement
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age (60 years) and another 44% are over 50 years of age, i.e.,
close to retirement [Ng and Chan, 2015].

The Japanese construction industry is facing problems such
as manpower shortages, aging workers, and reduced interna-
tional competitiveness. Since November 2015, the Japanese
Ministry of Land, Infrastructure, Transport and Tourism has
promoted i-Construction [Suzuki, 2016], an initiative to op-
timize and upgrade the entire construction process—from in-
vestigation and design to construction and inspection, includ-
ing maintenance. i-Construction’s primary concepts are uti-
lization of information and communication technology and
the introduction of innovative technology, such as artificial in-
telligence (AI) through cooperation between industries, gov-
ernments, and academia. In this study, a practical construc-
tion support system based on i-Construction principles and
focused on shield tunneling is developed.

The shield tunneling [Maidl et al., 2013;
Japan Society of Civil Engineers, 2007] is a common
tunnel construction method. Shield tunneling tech-
niques have been intensively studied [Lin et al., 2019;
Koyama, 2003] in the civil and mechanical engineering do-
mains. In addition, some previous studies [Chen et al., 2019;
Hasanipanah et al., 2016] have examined shield tunneling
in the AI domain. Zhou et al. presented a predictive
framework for the attitude and position in shield tunneling
by applying a hybrid deep learning model, which contains
convolutional neural network feature extractor, and long
short-term memory predictor [Zhou et al., 2019]. Zhang
et al. established predictive models for assessing surface
settlement caused by earth pressure balance shield machine
based on extreme gradient boosting, artificial neural network,
support vector machine, and multivariate adaptive regression
spline [Zhang et al., 2020]. However, to the best of our
knowledge, no studies have focused on shield tunneling
planning processes and improved its efficiency.

In the planning process, tunnel segments are assigned to
a predetermined planning line, and, conventionally, to mini-
mize the gaps between segments and the planning line, skilled
engineers assign segments manually. Nevertheless, we have
only to reduce each gap less than a tolerance. In addition,
reducing the amount of excavated soil along each segment
is desirable. Automation and segment assignment optimiza-
tion will address the problem of skilled labor shortage and
improve productivity. In this study, we addressed segment



(a) Side View (b) Rear and Front View

Figure 1: An Example of Construction Diagrams of A Shield Machine

assignment as a constrained combinatorial optimization prob-
lem.

This problem has three notable characteristics: high-
dimensional decision variables, categorical values, and nar-
row feasible region. This paper proposes the Cooperative Co-
evolutionary Integer Categorical Particle Swarm Optimiza-
tion (εCCICPSO), which is a combination of the Coopera-
tive Coevolutionary framework, Integer Categorical Particle
Swarm Optimization (ICPSO), and ε constrained method, for
large-scale constrained combinatorial optimization problem,
such as the segment assignment. Herein, we have attempted
to verify the effectiveness of the proposed εCCICPSO to seg-
ment assignment through the two-dimensional simulation ex-
periment using real-world construction data.

2 Segment Assignment
In this section, we explain the segment assignment and its for-
mulation as constrained combinatorial optimization problem.

2.1 Shield Tunneling
Shield tunneling is a tunnel construction method that uses ex-
cavation machines (shield machines) shown in Fig. 1. The
front surface of the shield machine has cutters (called the cut-
ter head) for ground excavation. The over cut i.e., the ex-
ternal cutter equipped outside the front surface, is controlled
such that the machine body can pass without contacting the
ground wall. A shield machine is divided to front and rear
drums, and the angle between the front drum and the rear
drum (referred to as the joint angle) is controlled to allow the
shield machine to move around curves. Segments are assem-
bled at the rear of the shield machine, and the shield machine
is propelled by the reaction force given from its jack pushing
the located segment.

2.2 Segment Assignment Problem
In the planning process, multiple types of segments are pro-
vided for each construction project. The segments should be

assigned along a planning line comprising straight lines and
curves such that gaps between each segment and the planning
line fall within a given tolerance, as shown in Fig. 2. Conven-
tionally, skilled engineers manually assign segments to mini-
mize these gaps without considering construction costs; how-
ever, this assignment roughly determines the shield machine’
s excavation route. Thus, optimization of this assignment will
reduce shield construction costs. Herein, we focus on seg-
ment assignment problems to reduce the amount of excavated
soil. There are two primary demands in segment assignment:
(1) gaps between each segment and the planning line should
be within the given tolerance, and (2) the amount of soil ex-
cavated by the shield machine along the segments should be
reduced. In this study, the former is treated as an inequality
constraint, and the latter is treated as an objective function.
We define segment assignment as the following constrained
combinatorial optimization problem:

minimize f(x),

subject to (gi(x)− gt) ≤ 0, (1)
xi ∈ {1, · · · , k}, (i = 0, · · · , n)

where xi ∈ {1, · · · , k} corresponds to the type of the seg-
ment assigned to i-th position, and k is the number of segment
types. A decision variable vector x = (x1, x2, · · ·xn) ex-
presses the assigned segments. The objective function f(x)
is the amount of soil excavated along to segments x by the
shield machine; gi(x) as the gap between the i-th segment
and the planning line; and gt is the gap tolerance.

This problem involves an n-dimensional decision vari-
able vector, where n is generally over several hundreds.
Consequently, this problem has an extremely large search
space; however, a solution must be quickly obtained because
the segment assignment plan should be revised when the
actual construction deviates from the plan. Population-
based metaheuristics, such as swarm intelligence (SI),
are frequently used for real-world optimization prob-
lems as they provide easy parallelization and demonstrate



Figure 2: An Example of Segment Assignment

good multi-point search efficiency [Pitakaso et al., 2020;
Singh and Salgotra, 2019; Hassanien and Emary, 2018;
Zhang et al., 2014]. Although many discrete optimiza-
tion algorithms are based on SI, they often only con-
sider integer problems [Kennedy and Eberhart, 1995;
Pampara et al., 2005]. However, segment assignment
involves variables whose values are categorical and un-
ordered rather than purely numerical. PSO is one of the
most widely used SI algorithms, and integer categorical
PSO (ICPSO) [Strasser et al., 2016], outperforms other
discrete versions of PSO in unordered discrete optimization.
In addition, gap tolerance gt is typically about 50mm,
whereas the diameter of segments is around 10m. Seg-
ment assignment has n severe constraints. For handling
the severe constraints, the ε constrained method is pro-
posed by [Takahama and Sakai, 2005]. Adapting the ε
constrained method to the ICPSO, Ihara et al. developed
ε constrained Integer Categorical Optimization (εICPSO),
which demonstrated the effectiveness for the segment
assignment [Ihara et al., 2019]. However we found that its
performance decreases when handling the high dimensional
variables due to random sampling of ICPSO. Thus, we adapt
the cooperative coevolutionary framework to ICPSO for
large-scale constrained combinatorial optimization.

3 Proposed Method
This paper proposes Cooperative Coevolutionary Integer Cat-
egorical Particle Swarm Optimization (CCICPSO) and seg-
ment assignment using combination of CCICPSO and ε con-
strained method (εCCICPSO).

3.1 ICPSO
The ICPSO is a novel PSO algorithm that has been shown to
surpass other discrete PSO algorithms [Strasser et al., 2016].
In the PSO, particles search for the best position of the search
space. Particles have a position and a velocity, and the po-
sition corresponds to a candidate solution. Original PSO as-
sumes continuous state variables. In the ICPSO, the represen-
tation of the particle’s position is altered so that each attribute
in a particle is a distribution over its possible values rather
than a value itself similarly to Estimation of Distribution Al-
gorithms (EDAs) [Larrañaga and Lozano, 2002]. A particle
is evaluated by sampling a candidate solution from these dis-
tributions and then calculating its fitness.

In the ICPSO, a particle p’s position Xp is represented as
Xp = [Dp,1,Dp,2, · · · ,Dp,n] where each Dp,i is the proba-

bility distribution for variable Xi. In other words, each com-
ponent of the position vector is a set of probabilities Dp,i =

[dap,i, d
b
p,i, · · · , dkp,i], where djp,i denotes the probability that

variable Xi takes on value j for particle p. A particle p’s
velocity Vp is a vector of n vector φ, which control the par-
ticle’s probability distributions. Vp = [φp,1, φp,2, · · · , φp,n],

φp,1 = [ψa
p,i, ψ

a
p,i, · · · , ψa

p,n], where ψj
p,i corresponds to ve-

locity of particle p for variable i in state j.
The velocity and position update equations are applied di-

rectly to the values in the distribution.

Vp =ωVp + U(0, ϕ1)⊗ (pBest− Xp)

+ U(0, ϕ2)⊗ (gBest− Xp),

Xp =Xp+Vp,

where each operator is performed component-wise over each
variable in the vector; and U(0, ϕ1) and U(0, ϕ2) are uni-
formly distributed random numbers between 0 and ϕ1 and 0
and ϕ2 respectively. The vector pBest is the best position in
the search space this particle has ever reached; the gBest is
the best position in the search space any particle in the swarm
has ever reached. The particle moves in the search space by
adding the updated velocity to the particle’s position vector
at the current iteration. The particle’s behavior is controlled
with adjusting the parameter ω, ϕ1, and ϕ2 known as inertia,
the cognitive component and the social component.

After the velocity and position update, any value outside
[0,1] is mapped to the nearest boundary in order to maintain
a valid probability. In addition, the distribution is normalized
to ensure that the sum of its values is 1.

To evaluate a particle p, its distributions are sampled to
create a candidate solution Sp = [sp,1, sp,2, · · · , sp,n] where
sp,j denotes the state of variable Xj . The samples are eval-
uated by the fitness function, and then the distributions are
evaluated by their own sample’s fitness value.

When a sample produced by a particle exceeds the global
or local best, the best values are updated using both the dis-
tribution from the particle position Pp and the sample itself
Sp. Formally, for all states j ∈ V als(Xi) the global best’s
probability is updated as

djgB,i =


ϵ× djp,i (j ̸= sp,i)

djp,i +
∑

k∈V als(Xi)
∧k ̸=j

(1− ϵ)× dkp,i (j = sp,i)

where ϵ, the scaling factor, is a user-controlled parameter that
determines the magnitude of the shift in the distribution re-
stricted to [0, 1), and djgB,i is the global best position’s prob-
ability that variable Xi takes value j. This update increases
the probability of the distribution producing samples similar
to the best sample, while maintaining a valid probability dis-
tribution.

3.2 CCICPSO
In the CCICPSO, a problem is decomposed into several
smaller subcomponents based on Potter and De Jong’s
model [Potter and Jong, 2000]. Each component is assigned



to a subpopulation, such that individuals in each subpopula-
tion represent potential components to the original problem.
Then each component is evolved simultaneously but indepen-
dently in a round-robin fashion. The CCICPSO evolves sub-
swarms instead of subpopulations according to the ICPSO,
such that samples produced by particles in each sub-swarms
represent partial solution of the entire problem.

The fitness of a subpopulation member is determined by
the combination of this member and selected members from
the other subpopulations. In other words, collaborator sub-
components are selected from each of the other subpopula-
tions and assembled with the target individual to form a com-
plete solution. There are many ways of selecting collabora-
tors [Wiegand et al., 2001]. This paper uses the most widely
used one, choosing the best individuals from each of the indi-
viduals, that is to say, the global best samples of each of the
sub-swarms.

3.3 Constraint Handling
The εCCICPSO is constrained discrete optimization
algorithm based on CCICPSO and ε constrained
method [Takahama and Sakai, 2005]. The ε constrained
method adds the ability of constraint handling to the algo-
rithms originally designed for unconstrained optimization
problems, by introducing the ε level comparison. The
εCCICPSO ranks the solution candidates with the ε level
comparison instead of the general comparison.

The ε level comparison is a comparison operator consid-
ering both the constraints and objective values for ranking
candidate solutions. In this method, constraint violation ϕ(x)
is defined as a measure of how much the constraints a solu-
tion violates. The constraint violation can be given by the
maximum of all constraints or the sum of all constraints.

ϕ(x) = max
i
{0, gi(x)− gt},

ϕ(x) =
∑
i

max{0, gi(x)− gt}, (2)

where p is a positive number. In this paper, constrain violation
is given by (2), the sum of all constraints.

The ε level comparison (<ε,≤ε) is defined as an order re-
lation on the set of (f(x), ϕ(x)). If f1(f2) and ϕ1(ϕ2) are
the objective values and the constraint violation of solution
point x1(x2) respectively, then the comparison operators <ε

and ≤ε are defined by the following:

(f1, ϕ1) ≤ε (f2, ϕ2)⇔


f1 ≤ f2, (ϕ1, ϕ2 ≤ ε)
f1 ≤ f2, (ϕ1 = ϕ2)

ϕ1 < ϕ2, otherwise

This definition means that the ε level comparison compares
two solutions by constraint violation value first. If both solu-
tions have violation value under a small threshold ε the two
solutions are then compared by the objective function value
only.

4 Experiment
We attempt to verify the effectiveness of εCCICPSO to seg-
ment assignment through the two-dimensional simulation ex-
periment using real construction data with comparison with

the ε constrained integer categorical particle swarm optimiza-
tion (εICPSO) [Ihara et al., 2019] and ε constrained genetic
algorithm (εDGA) [Ihara et al., 2018]. Candidate solutions
(assigned segments) are evaluated by the two-dimensional
simulator we developed. Solutions are encoded to parti-
cles and integer chromosome and they are evolved by the
εCCICPSO, εICPSO, and εDGA.

4.1 Fitness and Constraint Evaluation
The simulator evaluates segments by the area of the region
a shield machine passed along to the segments assuming that
the amount of excavated soils is in proportion to the area. The
area of the region through which the front of the shield ma-
chine passes is determined by the product of the width of the
shield machine and the total length of the planning line. Thus,
We define the area of the excavated field excluding this field
as the fitness because this field does not depend on segment
assignment. This fitness is equivalent to the amount of the
soil excavated by the overcut.

4.2 Comparative Methods
Conventional Method
In the construction site, segments are manually assigned by
skilled engineers. However it is difficult to compare with real
skilled engineers’ assignment, because engineers take a lot of
time to assign segments in each problem. Since skilled engi-
neers assign in order to minimize the gaps without consider-
ing the amount of excavated soil, their methods are approxi-
mately equivalent to the greedy method where segments are
assigned to minimize gaps, as shown in Algorithm 1. Thus
we compare the proposed methods to the greedy method in-
stead of skilled engineers.

εICPSO and εDGA
For the segment assignment problem, Ihara et
al. proposed the εICPSO [Ihara et al., 2019] and
εDGA [Ihara et al., 2018], where the ε constraint method
is adapted to the ICPSO and discrete genetic algorithm.
The εDGA is basically based on standard genetic algo-
rithms, but in the algorithm, individuals are ranked by
the ε level comparison with the ε level controlled in each
generation. In particular, the parents are selected by selec-
tion methods based on comparison of individuals such as
tournament selection [Miller et al., 1995] and ranking selec-
tion [Goldberg and Deb, 1991] using the ε level comparison
instead of general comparison. Elite individuals are also
selected by ε level comparison to carry over to the next
generation according to elitism. Algorithm 2 summarizes the
εDGA.

4.3 Experimental Setup
The algorithms tackle the constrained combinatorial opti-
mization problem defined in (1). Planning lines are defined by
the given series of curvature radius R and length L. Fig. 3a,
3b, and 3c show the planning lines used in the experiment
pl01, pl02, and pl03. The segments are defined as shown in
Fig. 3d, and we use the segment sets sg01 and sg02, which
include segments whose type number is from one to three,



(a) pl01

(b) pl02

(c) pl03

(d) segments

(e) shield machine

Figure 3: Dimensions [mm] of the planning lines, the segments, and the shield machine used in the experiments.

Algorithm 1 Greedy Method for Segment Assignment

1: Decision variable x = (x1, . . . , xn)
T , xi ∈ {1, . . . , k}

2: initialize position(P0)
3: for i = 1 to n
4: for j = 1 to k
5: P j

i ← next position(Pi−1, Segmentj)

6: gj ← gap(P j
i )

7: end for
8: xi ← arg minj∈{1,...,k} gj
9: Pi ← P xi

i
10: end for
11: return x

and from one to five, respectively. The gap tolerance gt is set
to 50mm in each problem.

We conduct 50 trials of evolutions where fitness evalu-
ations are limited up to 500,000 times with all of the al-
gorithms. The εCCICPSO decomposes the original prob-
lem to 5 sub-components, and uses 5 swarms of size 50.
The swarms are evolved for 2, 000 iterations. The εICPSO
uses a swarm of size 100, and the swarm is evolved for
5, 000 iterations. They are owing to the recommenda-
tion of [Engelbrecht, 2014], which demonstrated that a large
swarm may, counterintuitively, have difficulty exploring the
search space. In the both of εCCICPSO and εICPSO, the
cognitive component ϕ1 and social component ϕ2 are set to
1.49618, and the inertia ω is 0.729, which has been found to
encourage convergent trajectories [Eberhart and Shi, 2000].
εCCICPSO uses the scaling factor ϵ = 0.1. In the pl01
and pl02 problems, εICPSO uses the scaling factor ϵ =
5.0 × 10−4, and in the pl03 problems ϵ = 1.0 × 10−4, due
to large dimensions of the problems. In the εDGA, popula-
tions are evolved for 500 generations, with a population of
size 1, 000. Uniform crossover [Syswerda, 1989] is applied
95% of the time offspring are produced, and each offspring
does uniform mutation [Goldberg, 1989] where each gene has
a 5% chance of change to random value. Through the evolu-

Algorithm 2 εDGA

1: initialize population(P )
2: evaluate population(P )
3: while (termination condition not met)
4: ε← control epsilon level()
5: Pmating ← selection(Pt, ε)
6: while (Pmating is not empty)
7: parents← pop(Pmating)
8: offspring ← crossover(parents)
9: offspring ← mutate(offspring)
10: add offspring to Poffspring

11: end while
12: Poffspring ← evaluate(Poffspring)
13: P ← replacement(P, Poffspring, ε)
14: end while
15: return the best individual ranked by <0

tions, ε level is set to 0.

4.4 Experimental Results
The experimental results show that the proposed method
have a potential to find the segment assignment reducing
the amount of excavated soil as compared to the conven-
tional method (skilled engineer) while keeping the all gaps
between segments and the planning line falling within the tol-
erance. Because all the algorithms obtained feasible solutions
in each trials, only fitness scores are shown. Table 1 shows
the experimental results on the problems (Fig. 3). In the ta-
ble, ”Mean” and “Std dev” are the mean value and the stan-
dard deviation value of 50 trials on the each problem respec-
tively. Bold values indicate algorithms that statistically sig-
nificantly outperformed all other methods (one-tailed Welch’s
t-test, α = 0.01). Fig. 4 illustrates the performance of the
εCCICPSO, the εICPSO and εDGA. Their fitness scores are
shown as box plots, where the boxes represent the 25th to
75th percentiles, the lines within the boxes represent the me-
dian, and the lines outside the boxes represent the minimum



Table 1: Fitness Scores of Feasible Solutions Obtained by Each Algorithm [m2] (50trials)

Problem Skilled engineer εCCICPSO εICPSO εDGA
Segment set Planning line (Greedy method) Mean (Std dev) Mean (Std dev) Mean (Std dev)

sg01 (k = 3)
pl01 (n=267) 107.48 106.46 (9.37e-2) 106.87 (1.54e-1) 107.42 (4.33e-2)
pl02 (n=210) 102.54 102.23 (2.05e-2) 102.26 (1.41e-2) 102.47 (1.82e-2)
pl03 (n=325) 105.33 104.81 (5.38e-2) 105.18 (3.77e-2) 105.33 (1.64e-2)

sg02 (k = 5)
pl01 (n=267) 107.35 106.48 (1.01e-1) 106.84 (7.30e-2) 107.32 (3.05e-2)
pl02 (n=210) 102.52 102.22 (5.95e-3) 102.25 (1.72e-2) 102.46 (2.55e-2)
pl03 (n=325) 105.08 104.85 (2.46e-2) 104.93 (2.46e-2) 105.08 (1.60e-2)
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Figure 4: Box plots of fitness scores of all the algorithms for each problem with 50 trials, with horizontal dashed lines representing the
conventional method’s evaluations.

and maximum values. The conventional method’s scores are
represented by the horizontal dashed lines.

It is clear that the εCCICPSO has clear advantage over the
other algorithms. In all the problems, the εCCICPSO statis-
tically performs the best. In particular, the worst scores of
εCCICPSO exceed the εICPSO’s average, εDGA’s best and
the skilled engineer’s score. In complex problems, with large
n or k, the difference in the performance is especially remark-
able. Although the εDGA has potential to find the solution
superior to the skilled engineer in terms of the best score, its
score averagely almost equivalent and at worst inferior in the
pl03 problems.

5 Conclusion
We addressed the segment assignment in shield tunneling as a
constrained combinatorial optimization problem. This paper
proposed the εCCICPSO and demonstrated its effectiveness
to segment assignment problems. The experimental results

showed its potential to reduce construction costs as compared
with the conventional method. In all the test problems, the
proposed method outperformed all the comparative methods.
In the future, we will make more experiments using three-
dimensional simulator for more accurate evaluation of the
proposed method.
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[Larrañaga and Lozano, 2002] Pedro Larrañaga and Jose A
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